Kites Junior College
 PRE-FINAL-I Examination
 MATHS-IA

Time : $\mathbf{3} \mathbf{~ H r s}$
Max.Marks:75

SECTION-A

I.Answer all the questions.

$10 \times 2=20$

1. If $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ defined by $\mathrm{f}(\mathrm{x})=5^{x}$, then find $f^{-1}(\mathrm{x})$.
2. Find the domain of the real valued function $f(x)=\frac{1}{\sqrt{x^{2}-a^{2}}}(a>0)$
3. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$ and $2 X+A=B$, then find X
4. For any square matrix A , show that AA^{\prime} is symmetric.
5. If $\bar{a}=2 i+4 j-5 k, \bar{b}=i+j+k$ and $\bar{c}=j-2 k$. Find the unit vector in the opposite direction of $\bar{a}+\bar{b}+$ \bar{c}.
6. Find the vector equation of the line passing through the point $2 i+3 j+k$ and parallel to the vector $4 i-2 j+3 k$.
7. If $\bar{a}=i+2 j-3 k$ and $\bar{b}=3 i-j+2 k$, then how that $\bar{a}+\bar{b}$ and $\bar{a}-\bar{b}$ are perpendicular to each other.
8. Find the period of the function $\tan \left(x+4 x+9 x+\ldots \ldots+n^{2} x\right)$ (n any positive integer)
9. Prove that $\frac{\cos 9^{0}+\sin 9^{0}}{\cos 9^{0}-\sin 9^{0}}=\cos 36^{0}$
10. Show that $\tan h^{-1}\left(\frac{1}{2}\right)=\frac{1}{2} \log _{e} 3$

SECTION-B

II. Answer Any Five of the following.

$$
5 \times 4=20
$$

11. If $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\mathrm{E}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$,then show that $(a I+b E)^{3}=a^{3} I+3 a^{2} b E$ where I is unit matrix of order 2 .
12. ABCDEF is regular hexagon with Cenre ' O '. Show that $\overline{A B}+\overline{A C}+\overline{A D}+\overline{A E}+\overline{A F}=3 \overline{A D}=6 \overline{A O}$
13. If $\bar{a}=2 i+j-k, \bar{b}=-i+2 j-4 k$ and $\bar{c}=i+j-k$, then find $(\bar{a} \times \bar{b}) \cdot(\bar{b} \times \bar{c})$
14. Prove that $\left(1+\cos \frac{\pi}{10}\right)\left(1+\cos \frac{3 \pi}{10}\right)\left(1+\cos \frac{7 \pi}{10}\right)\left(1+\cos \frac{9 \pi}{10}\right)=\frac{1}{16}$
15. Solve $\sqrt{2}(\sin x+\cos x)=\sqrt{3}$
16. Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}$
17. In a $\triangle A B C$ show that $\frac{b^{2}-c^{2}}{a^{2}}=\frac{\sin (B-C)}{\sin (B+C)}$

SECTION-C

III.Answer Any Five of the following.
 $5 \times 7=35$

18. If f: $\mathrm{A} \rightarrow B$ is a bijection, then prove that fo $f^{-}=I_{B}$ and f^{-I} of $=I_{A}$
19. Using Mathematical Induction, prove that statement for all $\mathrm{n} \in N$ $\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots \ldots . .\left(1+\frac{2 n+1}{n^{2}}\right)=(n+1)^{2}$
20. Without expanding the determinant show that $\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
21. Solve $3 x+4 y+5 z=18,2 x-y+8 z=13$ and $5 x-2 y+7 z=20$ by using "matrix inversion method".
22. If $\bar{a}, \bar{b}, \bar{c}$ are three vectors, then prove that
(i) $(\bar{a} \times \bar{b}) \times \bar{c}=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{b} \cdot \bar{c}) \bar{a}$
(ii) $\bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{a} \cdot \bar{b}) \bar{c}$
23. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, then prove that $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}=2\left(1+\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)$
24. If $\mathrm{a}=13, \mathrm{~b}=14, \mathrm{c}=15$, show that $\mathrm{R}=\frac{65}{8}, \mathrm{r}=4, r_{1}=\frac{21}{2}, r_{2}=12$ and $r_{3}=14$.
